# There is very much space before and after the condition of the equation

by Kishan Dholariya   Last Updated July 12, 2019 13:23 PM - source

I do not understand the code here. Where can I change the space options? Also the right side of the condition, I am not able to add "space" between text.

\documentclass[
pdftex,
12pt,
a4paper,
chapterprefix,
%footsepline,
colordvi,
twoside,
parskip=half,
final,
appendixprefix,
pointlessnumbers,
tablecaptionabove,
%emulatestandardclasses,
BCOR=12mm,
DIV=16,
bibliography=totocnumbered,
listof=totocnumbered,
%listof=totoc,
listof=entryprefix,
toc=sectionentrywithdots]{scrbook}

\usepackage[utf8x]{inputenc}
\usepackage[intlimits]{amsmath}     % place the subscripts and superscripts in the right position
\usepackage{amsfonts}               % additional fonts like \mathbb, \mathfrak

\newenvironment{conditions}
{\par\vspace{\abovedisplayskip}\noindent
\tabularx{\columnwidth}{>{$}l<{$} @{${}={}$} >{\raggedright\arraybackslash}X}}
{\endtabularx\par\vspace{\belowdisplayskip}}

\begin{document}

\section{Forced vibration of Single Degree of Freedom System with damping}
The complementary solution of equation is the free vibration response given by
\begin{equation}
u_{c}(t) = e^{−\zeta\omega_{n} t} \left(A cos \omega_{D}t + B sin\omega_{D} t\right)
\end{equation}

\begin{align*}
m &= mass\\
k &= stiffness\\
c &= damping coefficient\\
\zeta &= damping ratio\\
u &= displacement\\
\dot{u} &= velocity\\
\ddot{u} &= acceleration\\
\omega_{D} &= \omega_{n}\sqrt{1-\zeta^2}\\
A &= u_{0}\\
B &= \frac{\dot{u_{0}} + \zeta\omega_{n} u_{0}}{\omega_{D}}\\
\end{align*}

\subsection{Forced vibration of Single Degree of Freedom }

\end{document}


code is responding to me as,

     where: c = dampingcoefficient
ζ = dampingratio

Tags :

I'd probably just do this:

(I cleaned a lot that are not necessary for this MWE, not you had a UTF8 char as a minus instead of an ascii hyphen)

\documentclass{scrbook}

\usepackage[utf8]{inputenc}
\usepackage[intlimits]{amsmath}     % place the subscripts and superscripts in the right position

\begin{document}

\section{Forced vibration of Single Degree of Freedom System with damping}
The complementary solution of equation is the free vibration response given by
\begin{align}
u_{c}(t) &= e^{-\zeta\omega_{n} t} (A \cos \omega_{D}t + B
\sin\omega_{D} t)
\\
\nonumber
\begin{split}
m &= \text{mass}\\
k &= \text{stiffness}\\
c &= \text{damping coefficient}\\
\zeta &= \text{damping ratio}\\
u &= \text{displacement}\\
\dot{u} &= \text{velocity}\\
\ddot{u} &= \text{acceleration}\\
\omega_{D} &= \omega_{n}\sqrt{1-\zeta^2}\\
A &= u_{0}\\
B &= \frac{\dot{u_{0}} + \zeta\omega_{n} u_{0}}{\omega_{D}}
\end{split}
\end{align}

\subsection{Forced vibration of Single Degree of Freedom }

\end{document} 