It is my first week dealing with Differential Equations, and I am totally lost at solving the following equation:

$\int^x_0(x-t)y(t)dt=2x+\int^x_0y(t)dt$

Any help would be greatly appreciated!

From $\int^x_0(x-t)y(t)dt=2x+\int^x_0y(t)dt$ we derive

$$x\int^x_0y(t)dt -\int_0^xty(t)dt=2x+\int^x_0y(t)dt.$$

If we differentiate we get

$$\int^x_0y(t)dt+xy(x)-xy(x)=2+y(x).$$

Hence

$$\int^x_0y(t)dt=2+y(x).$$

Differentiation once again yields

$$y(x)=y'(x).$$

Can you proceed ?

July 12, 2019 10:09 AM

- Serverfault Help
- Superuser Help
- Ubuntu Help
- Webapps Help
- Webmasters Help
- Programmers Help
- Dba Help
- Drupal Help
- Wordpress Help
- Magento Help
- Joomla Help
- Android Help
- Apple Help
- Game Help
- Gaming Help
- Blender Help
- Ux Help
- Cooking Help
- Photo Help
- Stats Help
- Math Help
- Diy Help
- Gis Help
- Tex Help
- Meta Help
- Electronics Help
- Stackoverflow Help
- Bitcoin Help
- Ethereum Help