by Archimedess
Last Updated October 01, 2019 20:20 PM - source

Let $f:\mathbb{R}^2\to\mathbb{R}^2$ given by $f(x,y)=((x+2)^2+y, 2x-3y-1)$

how do I prove that this function is not injective and thus not globally invertible?

I tried with $f(x,y)=f(u,v)$ but the system is quite impossible/hard for me.. is there another way?

- Serverfault Help
- Superuser Help
- Ubuntu Help
- Webapps Help
- Webmasters Help
- Programmers Help
- Dba Help
- Drupal Help
- Wordpress Help
- Magento Help
- Joomla Help
- Android Help
- Apple Help
- Game Help
- Gaming Help
- Blender Help
- Ux Help
- Cooking Help
- Photo Help
- Stats Help
- Math Help
- Diy Help
- Gis Help
- Tex Help
- Meta Help
- Electronics Help
- Stackoverflow Help
- Bitcoin Help
- Ethereum Help