by Marcos G Neil
Last Updated August 14, 2019 09:20 AM - source

Let $F ⊂ L $ a extension of fields of degree 4. Prove that there are no more than 3 fields proper intermediate subfields $K$; namely, such that $F ⊂ K ⊂ L$

Using the degree of the field extension, I only know that $K$ is a field extension of $F$ of degree 2. This question is quite more specific than related questions on stack already. So how can we solve this?

- Serverfault Help
- Superuser Help
- Ubuntu Help
- Webapps Help
- Webmasters Help
- Programmers Help
- Dba Help
- Drupal Help
- Wordpress Help
- Magento Help
- Joomla Help
- Android Help
- Apple Help
- Game Help
- Gaming Help
- Blender Help
- Ux Help
- Cooking Help
- Photo Help
- Stats Help
- Math Help
- Diy Help
- Gis Help
- Tex Help
- Meta Help
- Electronics Help
- Stackoverflow Help
- Bitcoin Help
- Ethereum Help