I'm reading the paper "Iwasawa Theory for p-adic representation" in which I am not unable to follow one statement:

Let $K \subset \overline {\mathbb Q} $ be a finite extension of $\mathbb Q$. Let $V_p$ be a representation space over $\mathbb Q_p$ for $G_K=Gal(\overline K/K)$ of dimension d, $T_p$ a $G_K$-invariant lattice, and $A=V_P/T_p \cong (\mathbb Q_p/\mathbb Z_p)^d.$ Let $Ram(V_p)$ denote the set of places of $K$ which are unramified in $K(A)/K$. Assume that $Ram(V_p)$ is finite. Let $S$ be a finite set of places of $K$ containing $Ram(V_p)$, all places over $p$, and all infinite places. Let $K_s$ denote the maximal extension of $K$ unramified outside $S$.

Question: Why A is a $Gal(K_S/K)$ module?

- Serverfault Help
- Superuser Help
- Ubuntu Help
- Webapps Help
- Webmasters Help
- Programmers Help
- Dba Help
- Drupal Help
- Wordpress Help
- Magento Help
- Joomla Help
- Android Help
- Apple Help
- Game Help
- Gaming Help
- Blender Help
- Ux Help
- Cooking Help
- Photo Help
- Stats Help
- Math Help
- Diy Help
- Gis Help
- Tex Help
- Meta Help
- Electronics Help
- Stackoverflow Help
- Bitcoin Help
- Ethereum Help