by Mathaman Topologius
Last Updated August 12, 2018 13:20 PM - source

What is the limit of this sequence?

$s_n= \frac{1-2+3-4+5-6+7+...+(-2n)}{\sqrt{n^2+1}+\sqrt{n^2-1}}$

I need hint. I don't want the solution. Which idea should I use here.

$$s_n= \frac{(1-2)+(3-4)+(5-6)+...+(2n-1+(-2n))}{\sqrt{n^2+1}+\sqrt{n^2-1}}=\frac{-n}{\sqrt{n^2+1}+\sqrt{n^2-1}}$$

August 12, 2018 12:45 PM

Hint: $$\sqrt{n^2+1}=n\sqrt{1+\frac{1}{n^2}}$$

August 12, 2018 12:58 PM

- Serverfault Help
- Superuser Help
- Ubuntu Help
- Webapps Help
- Webmasters Help
- Programmers Help
- Dba Help
- Drupal Help
- Wordpress Help
- Magento Help
- Joomla Help
- Android Help
- Apple Help
- Game Help
- Gaming Help
- Blender Help
- Ux Help
- Cooking Help
- Photo Help
- Stats Help
- Math Help
- Diy Help
- Gis Help
- Tex Help
- Meta Help
- Electronics Help
- Stackoverflow Help
- Bitcoin Help
- Ethereum Help